On the Attainment of the Cramer-Rao Lower Bound

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cramer-Rao Lower Bound and Information Geometry

This article focuses on an important piece of work of the world renowned Indian statistician, Calyampudi Radhakrishna Rao. In 1945, C. R. Rao (25 years old then) published a pathbreaking paper [43], which had a profound impact on subsequent statistical research. Roughly speaking, Rao obtained a lower bound to the variance of an estimator. The importance of this work can be gauged, for instance,...

متن کامل

The Cramer-Rao Lower Bound in the Phase Retrieval Problem

This paper presents an analysis of Cramer-Rao lower bounds (CRLB) in the phase retrieval problem. Previous papers derived Fisher Information Matrices for the phaseless reconstruction setup. Two estimation setups are presented. In the first setup the global phase of the unknown signal is determined by a correlation condition with a fixed reference signal. In the second setup an oracle provides t...

متن کامل

Cramer-Rao Lower Bound Computation Via the Characteristic Function

The Cramer-Rao Lower Bound is widely used in statistical signal processing as a benchmark to evaluate unbiased estimators. However, for some random variables, the probability density function has no closed analytical form. Therefore, it is very hard or impossible to evaluate the Cramer-Rao Lower Bound directly. In these cases the characteristic function may still have a closed and even simple f...

متن کامل

Geometry of the Cramer-Rao bound

The Fisher information matrix determines how much information a measurement brings about the parameters that index the underlying probability distribution for the measurement. In this paper we assume that the parameters structure the mean value vector in a multivariate normal distribution. The Fisher matrix is. then a Gramian constructed from the sensitivity vectors that characterize the first-...

متن کامل

Sequential Estimators .and Tiie Cramer-rao Lower Bound

summary While all nonsequential unbiased estimators of the normal mean have variances which must obey the Cramer-Rao inequality, it is shown that some sequential unbiased estimators do not.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: The Annals of Statistics

سال: 1976

ISSN: 0090-5364

DOI: 10.1214/aos/1176343599